## Introduction to Bioinformatics 4. Protein Analysis and alignment

Benjamin F. Matthews
United States Department of Agriculture
Soybean Genomics and Improvement
Laboratory
Beltsville, MD 20708
matthewb@ba.ars.usda.gov

## What we will cover today

- DNA translation
  - Protein analysis
- Similarity searches

## You obtained the DNA sequence of your cDNA clone

- Does the sequence represent a full-length cDNA?
- What protein does it encode?
- What are the properties of the protein?
- Is the protein amino acid sequence conserved?
- How closely does it resemble proteins of known function?

Translation of DNA sequence into protein sequence

## **Protein databases**

- Swiss-Prot
  - A curated protein sequence database containing functional annotation, such as the description of the function of a protein, its domains structure, post-translational modifications, variants, etc.
  - Minimal level of redundancy
  - Good integration with other databases
  - Developed by the Swiss-Prot group at Swiss Institute of Bioinformatics (SIB) and at European Bioinformatics Institute (EBI)
- TrEMBI
  - A computer-annotated supplement of Swiss-Prot
  - Contains all the translations of EMBL nucleotide sequence entries not yet integrated in Swiss-Prot
  - Highly redundant

## Relationship with Other Databases

EMBL Database entries are cross referenced to following databases:

- Eukaryotic Promoter database
- TRANSFAC
- FlyBase
- ◆ TrEMBL
- Swiss-Prot

## **ExPASy**

- Expert Protein Analysis System
- Swiss Institute of Bioinformatics
- Proteomics server for protein analysis
- http://us.expasy.org/ in US
- <a href="http://www.expasy.org/">http://www.expasy.org/</a> -in Switzerland
- Translate tool, other tools, molecular databases, and links

## **ExPaSy Databases**

Swiss-Prot: protein databaseTrEMBL: protein database

Prosite: protein families and domains

Swiss-2Dpage: 2D polyacrylamide gel electrophoresis

■ Swiss-3Dimage: 3D images of proteins and other biological

macromolecules

Enzyme: enzyme nomenclatureCD40Lbase: CD40 ligand defects

SeqAnalRef: sequence analysis bibliographic references

## **ExPaSy Tools**

- http://bo.expasy.org/
- Protein and sequence analysis tools
- Melanie 4 Software for 2-D PAGE analysis
- Roche Applied Science's Biochemical Pathways

## **Ensemble**

- http://www.ensembl.org/
- A joint project between EMBL-EBI and the Sanger Institute to develop a software system produces and maintains automatic annotation on eukaryotic genomes.

## **ExPASy**

Translate your DNA sequence

## Translate DNA into protein

- Software to translate DNA
- Reading frame
  - ◆ Forward and reverse
- Start site
- Stop codon
- polyA tail
- Transit peptides —targeting
- Motifs (conserved regions)











## Results Six reading frames provided Select one Clues: Number and placement of stop codons ATG start site (methionine) Poly (A) tail Alignment with other protein sequences









## Pair-wise alignment of protein sequences

## Why do Pairwise alignment searches?

- Are there other genes in database similar to yours?
- Have these other genes been well studied?
  - ◆ Leads to literature searches on these genes
- What is the function of these genes?
- Identify conserved motifs
  - ◆ Are they important to structure or function?
- Phylogenetic trees
  - ◆ Relatedness and evolution

## **Protein Sequence Comparisons**

- Similarity searches
  - One sequence against another
  - Comparison of individual sequences against database of individual sequences
  - ◆ BLAST
- Profile searches
  - ◆ Uses collective characteristics of protein family
    - Conserved domains, motifs, etc.
  - Search can be one sequence against many
  - ProfileScan, CDD, PSI-BLAST

## Search with Protein, not DNA Sequences

- 1) 4 DNA bases vs. 20 amino acids less chance similarity
- 2) can have varying degrees of similarity between different amino acids according to properties
- 3) Calculations based on similarity matrix scores
  - BLOSUM multiple sequence alignment pf related proteins; conserved regions; weighted set representations
  - PAM matrix Evolutionary tree; Number of mutations; Which residues conserved; Chemical similarity
- 4) protein databanks are <u>much</u> smaller than DNA databanks

## Similarity ≠ Homology

- 1) 25% similarity ≥ 100 AAs is strong evidence for homology
- 2) Homology is an evolutionary statement which means "descent from a common ancestor"
  - ◆ common 3D structure
  - usually common function
  - homology is all or nothing, you cannot say "50% homologous"

## Pairwise Alignment

- The alignment of two sequences (DNA or protein) is a relatively straightforward computational problem.
  - There are lots of possible alignments.
- Two sequences can <u>always</u> be aligned.
- Sequence alignments have to be scored.
- Often there is **more than one** solution with the same score.

## Methods of Alignment

- By hand slide sequences on two lines of a word processor
- Dot plot
  - with windows
- Rigorous mathematical approach
  - Dynamic programming (slow, optimal)
- Heuristic methods (fast, approximate)
  - ◆ BLAST and FASTA
    - Word matching and hash tables



## Protein scoring

- 20 amino acids
- Gap penalty
- Relationships among amino acids
  - Scoring matrix for amino acid substitutions

## Similarity is Based on Dot Plots

- 1) one sequence is designated the x-axis and the other is designated the y-axis
- 2) put dots wherever there is a match
- 3) diagonal line is region of similarity (local alignment)
- 4) apply a window filter look at a group of bases, must meet % identity to get a dot

## Dot Matrix method

- One sequence is designated the x-axis and the other is designated the y-axis
- A dot is created when the sequence elements corresponding to the x and y coordinates "match".
- Diagonal lines within these plots indicate regions of similarity.

## **Simple Dot Matrix**

|   | В | A | S | K | Е | T | S | L | L | L |
|---|---|---|---|---|---|---|---|---|---|---|
| В | • |   |   |   |   |   |   |   |   |   |
| A |   | • |   |   |   |   |   |   |   |   |
| S |   |   | • |   |   |   |   |   |   |   |
| Е |   |   |   |   | • |   |   |   |   |   |
| В | • |   |   |   |   |   |   |   |   |   |
| A |   | • |   |   |   |   |   |   |   |   |
| L |   |   |   |   |   |   |   | • | • | • |

## **Characteristics of Dot Matrix**

- All possible matches of residues between two sequences are found
- Reveal the presence of insertions/deletions and direct and inverted repeats
- Dot matrix is visible on the computer screen
- Limitation is that most dot matrix computer programs do not show an actual alignment.

## Simple Dot Plot GATCAACTGACGTA GT TT CC AA GG CC TT GG CC TT AA CC





## **Makes Longest Diagonal**

- 3) after all diagonals found, tries to join diagonals by adding gaps
- 4) computes alignments in regions of best diagonals







## Protein Alignment Scoring Matrix Is Complex

- Conservation: What residues can substitute for another residue and not adversely affect the function of the protein?
  - ◆ Isoleucine and valine are both small and hydrophobic
  - Serine and threonine are both polar
  - Conserve charge, size, hydrophobicity, and other physicochemical factors
- Frequency:
  - How often does a particular residue occur
  - How ofter does it change? And to what other amino acid?



## **Scoring Matrix**

- Important to understand scoring matrices
  - ◆ Play a role in all analyses involving sequence comparison
  - Assumptions are made
  - Which assumptions agree with what you want?
  - Choice of matrix (thus software) can strongly influence outcome

## PAM (Percent Accepted Mutations) matrices

• Derived from global alignments of **protein families**. Family members share at least 85% identity (Dayhoff *et al.*, 1978).



- Construction of phylogenetic tree and ancestral sequences of each protein family
- Computation of number of replacements for each pair of amino acids
- •The number following the matirx, PAM30 or PAM100 refer to eevolutionary distance; the greater the number, the greater the distance.

### PAM (Percent Accepted Mutations) matrices

- The numbers of replacements were used to compute a so-called PAM-1 matrix.
- The PAM-1 matrix reflects an average change of 1% of all amino acid positions, ie. roughly 1% divergence. PAM matrices for larger evolutionary distances can be extrapolated from the PAM-1 matrix.
- PAM250 = 250 mutations per 100 residues.
- Greater numbers mean bigger evolutionary distance
- •Analysis documented 1572 changes in 71 groups of protein
- •High similarity within original sequence set, represents substitution pattern expected over short evolutionary distance

# PAM 250 A R N D C Q E G H I L K M F P S T W Y V B Z A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -6 -3 0 2 1 R -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4 -2 1 2 N 0 0 2 2 -4 1 1 0 2 -2 -3 1 -2 -3 0 1 0 -4 -2 -2 4 3 D 0 -1 2 4 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -4 -2 5 4 C -2 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2 -3 -4 Q 0 1 1 2 -5 4 2 -1 3 -2 -2 1 -1 5 0 -1 -1 -5 -4 -2 3 5 E 0 -1 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2 4 5 G 1 -3 0 1 -3 -1 0 5 -2 -3 -4 -2 -3 -5 0 1 0 -7 -5 -1 2 1 H -1 2 2 1 -3 3 1 -2 6 -2 2 0 -2 -2 0 -1 -1 -3 0 -2 3 3 I -1 -2 -2 -2 -2 -2 -2 -2 -3 -2 5 2 -2 2 1 1 -2 -1 0 -5 -1 4 -1 -1 L -2 -3 -3 -4 -6 -2 -3 -4 -2 -3 5 0 0 -3 -4 -2 2 2 2 M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 -2 -1 -4 -2 2 1 F -3 -4 -3 -6 -4 -5 -5 -5 -5 -5 -2 1 2 -5 -1 0 0 -3 -4 -2 2 2 M -1 0 0 -1 -3 0 1 -3 0 1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1 1 1 S 1 0 1 0 0 -1 -3 0 1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1 1 1 S 1 0 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1 1 1 S 1 0 1 0 0 -1 -3 0 -1 0 0 -2 0 -2 -3 1 2 1 -2 -3 0 2 1 V 0 -2 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4 0 0 B 2 1 4 5 -3 3 4 2 3 -1 -2 2 -1 -3 1 2 2 -4 -2 0 6 5 Z 1 2 3 4 -4 5 5 1 3 -1 1 2 0 -4 1 1 1 -4 -3 0 5 6

## PAM Matrices

- Short evolutionary distance
  - Change in function unlikely
- Point Accepted Mutation (PAM)
  - ◆ The new side chain must function the same way as old one ("acceptance")
  - ◆ On average, 1 PAM corresponds to 1 amino acid change per 100 residues
  - ◆ 1 PAM ~1% divergence
  - Extrapolates to predict patterns at longer evolutionary distances

## PAM Matrices: Assumptions

- All sites assumed to be equally mutable
- Replacement of amino acids is independent of previous mutations at the same position
- Replacement is independent of surrounding residues
- Forces responsible for sequence evolution over shorter time spans are the same as those over longer time spans

## PAM Matrices: Sources of Error

- Small, globular proteins of average composition was used to derive matrices
- Errors in PAM 1 are magnified up to PAM 250 (only PAM1 is based on direct observation)
- Does not account for conserved blocks or motifs

## **BLOSUM Matrices**

- Henikoff and Henikoff, 1992
- Blocks Substitution Matrix
  - ◆ Look only for differences in conserved, ungapped regions of a protein family ("blocks")
  - Directly calculated, uses no extrapolations
  - More sensitive to detecting structural or functional substitutions
  - Generally perform better than PAM matrices for local similarity searches



## **BLOSUM** (Blocks Substitution Matrix)

- Sequences within blocks are clustered according to their level of identity.
- Clusters are counted as a single sequence.
- Different BLOSUM matrices differ in the percentage of sequence identity used in clustering.
- The number in the matrix name (e.g. 62 in BLOSUM62) refers to the percentage of sequence identity used to build the matrix.
- Greater numbers mean smaller evolutionary distance.

## TIPS on choosing a scoring matrix

- Generally, BLOSUM matrices perform better than PAM matrices for local similarity searches (Henikoff & Henikoff, 1993).
- When comparing <u>closely related</u> proteins one should use <u>lower PAM or higher BLOSUM</u> matrices, for <u>distantly related</u> proteins <u>higher PAM or lower BLOSUM</u> matrices.
- For database searching the commonly used matrix is BLOSUM62.

## Can change sensitivity

| Triple-PAM Strategy |                                                      |        |  |  |  |  |  |
|---------------------|------------------------------------------------------|--------|--|--|--|--|--|
| PAM 40              | Short alignments, highy similar                      | 70-90% |  |  |  |  |  |
| PAM 160             | Detecting known members of protein family            | 50-60% |  |  |  |  |  |
| PAM 250             | Longer, weaker local alignments                      | ~30%   |  |  |  |  |  |
| BLOSUM              |                                                      |        |  |  |  |  |  |
| BLOSUM 90           | Short alignments, highly similar                     | 70-90% |  |  |  |  |  |
| BLOSUM 80           | Detecting known members of protein family            | 50-60% |  |  |  |  |  |
| BLOSUM 62           | Most effective in finding all potential similarities | 30-40% |  |  |  |  |  |
| BLOSUM 30           | Longer, weaker local alignments                      | <30%   |  |  |  |  |  |

No single matrix is the complete answer for all sequence comparisons

Gap penalties

## **Scoring Insertions and Deletions**



The creation of a gap is **penalized** with a negative score value.

## Gaps

- Compensate for insertions and deletions
- Used to improve alignments between two sequence
- Must be kept to a reasonable number (~1 gap per 20 residues is good)
- Cannot be scored as simply a "match" or a "mismatch"

## Gap penalty is assigned

- Fixed deduction for introducing a gap
- An additional deduction proportional to the length of the gap
- Deduction for a gap= G + Ln
  - $\bullet$  Where G = gap-opening penalty

L = gap-extension penalty

N = length of the gap

 Can adjust gap scores to make gap insertions more or less permissive by changing G and L default values

## Why Gap Penalties?

- The optimal alignment of two similar sequences is usually that which
  - maximizes the number of matches and
  - minimizes the number of gaps.
  - There is a tradeoff between these two
    - adding gaps reduces mismatches
- Permitting the insertion of arbitrarily many gaps can lead to high scoring alignments of **non-homologous** sequences.
- Penalizing gaps forces alignments to have relatively few gaps.

### **Gap Penalties**

- •How to balance gaps with mismatches?
- •Gaps must get a steep penalty, or else you'll end up with nonsense alignments.
- •In real sequences, muti-base (or amino acid) gaps are quit common
  - •genetic insertion/deletion events
- •"Affine" gap penalties give a big penalty for each new gap, but a much smaller "gap extension" penalty.

## **Modification of Gap Penalties**

Score Matrix: BLOSUM62

gap opening penalty = 3 gap extension penalty = 0.1 score = 6.3

gap opening penalty = 0

gap extension penalty =  $\overline{0.1}$  score = 11.3

1 ...VLSPADKFLTNV 12

1111

1 VFTELSPAKTV.... 11

1 V...LSPADKFLTNV 12

1 VFTELSPA.K..T.V 11

## **Scoring Insertions and Deletions**

match = 1 mismatch = 0

Total Score: 4

Total Score: 8 - 3.2 = 4.8

Gap parameters:

d = 3 (gap opening)

e = 0.1 (gap extension)

g = 3 (gap lenght)

 $\gamma(g) = -3 - (3 - 1) \cdot 0.1 = -3.2$ 

ATGT - - TATAC | | | | | TATGT CCGTTATA

insertion / deletion

## Global vs Local similarity

- 1) Global similarity uses complete aligned sequences total % matches
  - GAP program, Needleman & Wunch algorithm
- 2) <u>Local</u> similarity looks for best internal matching region between 2 sequences
  - **♦ BESTFIT** program,
  - Smith-Waterman algorithm,
  - ◆ BLAST and FASTA
- 3) dynamic programming
  - optimal computer solution, not approximate

## Global Alignment (Needleman - Wunsch)

- The the Needleman-Wunsch algorithm creates a global alignment over the length of both sequences (needle)
- Global algorithms are often not effective for highly diverged sequences - do not reflect the biological reality that two sequences may only share limited regions of conserved sequence.
  - Sometimes two sequences may be derived from ancient recombination events where only a single functional domain is shared.
- Global methods are useful when you want to force two sequences to align over their entire length

## Local Alignment (Smith-Waterman)

- Local alignment
  - ◆ Identify the most similar sub-region shared between two sequences
  - ◆ Smith-Waterman

## Scoring Similarity

- 1) Can only score aligned sequences
- 2) DNA is usually scored as identical or not
- 3) Amino acids have varying degrees of similarity
  - ◆ a. # of mutations to convert one to another
  - b. chemical similarity
  - ◆ c. observed mutation frequencies
- 4) Modified scoring for gaps single vs. multiple base gaps (gap extension)
- 5) PAM matrix calculated from observed mutations in protein families
- 6) BLOSUM matrix calculated from changes in conserved blocks of amino acid sequenc





(2) Compare the word list to the database and identify exact matches



## Extend hits one base at a time

(3) For each word match, extend the alignment in both directions to find alignments that score greater than a threshold of value S



Figure from Barton, G.J. Protein Sequence Alignment and Database Scanning (University of Oxford, Laboratory of Molecular Biophysics)

## **HSPs are Aligned Regions**

- The results of the word matching and attempts to extend the alignment are segments
  - called HSPs (High-scoring Segment Pairs)
- **BLAST** often produces several short HSPs rather than a single aligned region

## BLAST 2 algorithm

- The NCBI's BLAST website now uses BLAST 2 (also known as "gapped BLAST")
- This algorithm is more complex than the original BLAST
- It requires two word matches close to each other on a pair of sequences (i.e. with a gap) before it creates an alignment

## Web **BLAST** runs on a big computer at NCBI

- Usually fast, but does get busy sometimes
- Fixed choices of databases
  - problems with genome data "clogging" the system
  - ◆ ESTs are not part of the default "NR" dataset
- Graphical summary of output
- Links to GenBank sequences

## Alignment methods

- Rigorous algorithms = Dynamic Programming
  - ◆ Needleman-Wunsch (global)
  - ◆Smith-Waterman (local)
- Heuristic algorithms (faster but approximate)
  - **♦**BLAST
  - **◆**FASTA

## What we covered today

- DNA translation
  - Protein analysis
- Similarity searches